A Design Process

Lecture 6

Design Project
What is Design?

- “. . . to conceive and plan out in the mind, to devise for a specific function or end.” (Webster)
- “. . . making something that has not existed before.” (Petroski)
- “. . . the process of applying various techniques and scientific principles for the purpose of defining a device, a process, or a system in sufficient detail to permit its realization.”
Design Is Also:

- Fun
- Creative
- Challenging
- Interesting
- Undervalued
- And Fun
What Makes a Good Designer?

- Creativity
- Intellectual curiosity
- Unafraid to take chances
- Willing to fail and try again
- Strong knowledge of engineering fundamentals
- Good analysis skills
- Understanding of the design process
- Experience
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production

Iterate!
Identification of Need

“What the world needs is:”

- A good 5-cent cigar
- Non-fattening food
- An electric car with good range
- A better lawnmower
- A window cleaning robot
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production
Don’t reinvent the wheel!
- identify similar devices on market
- what are their problems?
- what technologies apply to problem?

Some Sources of Information
- World Wide Web
- Users (interviews - market surveys - focus groups)
- Patents (www.uspto.gov or www.delphion.com)
- Experiments and measurements
- Trade shows and manufacturer’s literature
A Design Process

- Identify a need
- Research the background
- **State the goal**
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production
Don’t say: “Design a better lawnmower.”
Rather say: “Design a means to shorten grass.”
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production
Functional (Task) Specifications

☐ Are “Performance Specifications,” not “Design Specifications.”

☐ Performance specs state WHAT is to be accomplished. Design specs state HOW it is to be done.

 ■ Performance spec: “Must be corrosion resistant in a salt spray test per ASTM 4023a.”
 ■ Design spec: Must be made of stainless steel.

☐ Must define the task in a way that:

 ■ Can be accomplished.
 ■ Can be shown (proven) to have been accomplished.
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production
The Creative Process

- **Idea Generation**
 - Frustration
 - Incubation
 - Eureka!

Blank paper syndrome
Idea Generation

- Don’t just take the first idea that comes to mind
- You want as many concepts as possible
 - Defer judgment on their quality until later
- Techniques to aid in concept generation
 - Draw analogies with other physical contexts
 - List synonyms for the verb in problem statement
 - Brainstorming
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production

Iterate!

Iterate!

Iterate!
Modeling and Analysis

- Develop models of promising concepts
 - Graphical (sketches, drawings)
 - CAD solid models
 - Mathematical models (simulations)
 - Physical models (proof of principle)

- Analyze the models to determine feasibility
 - Calculation
 - Testing

- When they don’t work, iterate!
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production
Decision Matrices

<table>
<thead>
<tr>
<th>Weighting Factor</th>
<th>Cost</th>
<th>Safety</th>
<th>Performance</th>
<th>Reliability</th>
<th>RANK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design 1</td>
<td>3</td>
<td>6</td>
<td>4</td>
<td>9</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>1.80</td>
<td>.60</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>Design 2</td>
<td>4</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>1.40</td>
<td>.60</td>
<td>1.05</td>
<td>.40</td>
<td></td>
</tr>
<tr>
<td>Design 3</td>
<td>1</td>
<td>9</td>
<td>4</td>
<td>5</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>.35</td>
<td>2.70</td>
<td>.60</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Design 4</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>7</td>
<td>5.8</td>
</tr>
<tr>
<td></td>
<td>3.15</td>
<td>.30</td>
<td>.90</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>Design 5</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>2.45</td>
<td>1.20</td>
<td>.30</td>
<td>1.20</td>
<td></td>
</tr>
</tbody>
</table>
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production

Iterate!

Iterate!

Iterate!
A Design Process

- Identify a need
- Research the background
- State the goal
- Develop functional (task) specifications
- Ideation and invention
- Modeling and analysis
- Selection of best solution
- Detailed design
- Prototype and test
- Production
Project Advice

☐ Use the Design Process – it works!
☐ Take advantage of incubation – start it now!
☐ The better you define the problem, the better will be the result.
☐ Don’t jump to a premature solution.
☐ The more concepts you generate, the better.
☐ “Invention is 1% inspiration and 99% perspiration.” Thomas Edison
Project Discussion