A steam turbine receives steam from two boilers. One flow is 5 kg/s at 3 MPa, 700°C and the other flow is at 15 kg/s at 800 kPa, 500°C. The exit state is 10 kPa with a quality of 96%. Find the total power out of the adiabatic turbine.

Given: Inlet and outlet conditions of steam turbine.

Find: Power output of turbine.

Assumptions: Steady flow process, negligible changes in kinetic and potential energy, \(Q = 0 \) (adiabatic).

Solution:

Conservation of mass:

\[
\frac{dm}{dt} = \sum \dot{m}_i - \sum \dot{m}_e \\
0 = \dot{m}_1 + \dot{m}_2 - \dot{m}_3 \\
\dot{m}_3 = \dot{m}_1 + \dot{m}_2
\]

Conservation of Energy:

\[
\frac{dE}{dt} = \dot{Q} - \dot{W} + \sum \dot{m}_i (h_i + ke_i + pe_i) - \sum \dot{m}_e (h_e + ke_e + pe_e) \\
0 = 0 - \dot{W} + \dot{m}_1 h_1 + \dot{m}_2 h_2 - \dot{m}_3 h_3 \\
\dot{W} = \dot{m}_1 h_1 + \dot{m}_2 h_2 - \dot{m}_3 h_3
\]

Define States:

<table>
<thead>
<tr>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1 = 3 \text{ MPa})</td>
<td>(P_2 = 800 \text{ kPa})</td>
<td>(P_3 = 10 \text{ kPa})</td>
</tr>
<tr>
<td>(T_1 = 700^\circ\text{C})</td>
<td>(T_2 = 500^\circ\text{C})</td>
<td>(x_3 = 0.96)</td>
</tr>
<tr>
<td>(h_1 = 3912 \text{ kJ/kg})</td>
<td>(h_2 = 3481 \text{ kJ/kg})</td>
<td>(h_3 = 191.8\text{kJ/kg+(0.96)2392.8kJ/kg= 2489 kJ/kg})</td>
</tr>
<tr>
<td>(\dot{m}_1 = 5 \text{ kg/s})</td>
<td>(\dot{m}_2 = 15 \text{ kg/s})</td>
<td>(\dot{m}_3 = \dot{m}_1 + \dot{m}_2 = 20 \text{ kg/s})</td>
</tr>
</tbody>
</table>

\[
\dot{W} = 5 \text{ kg/s}(3912 \text{ kJ/kg}) + 15 \text{ kg/s}(3481 \text{ kJ/kg}) - 20 \text{ kg/s}(2489 \text{ kJ/kg}) = 22.0 \text{ MW}
\]
A compressor receives 0.05 kg/s R-410a at 200 kPa, -20°C and 0.1 kg/s R-410a at 400 kPa, 0°C. The exit flow is at 1000 kPa, 60°C. Assume adiabatic, neglect kinetic energies, and find the required, power input.

Given: Inlet and outlet conditions of a compressor.

Find: Required power input to compressor.

Assumptions: Steady flow process, negligible changes in kinetic and potential energy, \(\dot{Q} = 0 \) (adiabatic).

Solution:

Conservation of mass:

\[
\left(\frac{dm}{dt} \right)_{CV} = \sum \dot{m}_i - \sum \dot{m}_e \\
0 = \dot{m}_1 + \dot{m}_2 - \dot{m}_3 \\
\dot{m}_3 = \dot{m}_1 + \dot{m}_2
\]

Conservation of Energy:

\[
\left(\frac{dE}{dt} \right) = \dot{Q} - \dot{W} + \sum \dot{m}_i (h_i + ke_i + pe_i) - \sum \dot{m}_e (h_e + ke_e + pe_e) \\
0 = 0 - \dot{W} + \dot{m}_1 h_1 + \dot{m}_2 h_2 - \dot{m}_3 h_3 \\
\dot{W} = \dot{m}_1 h_1 + \dot{m}_2 h_2 - \dot{m}_3 h_3
\]

Define States:

<table>
<thead>
<tr>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1) = 200 kPa</td>
<td>(P_2) = 400 kPa</td>
<td>(P_3) = 1000 kPa</td>
</tr>
<tr>
<td>(T_1) = -20°C</td>
<td>(T_2) = 0°C</td>
<td>(T_3) = 60°C</td>
</tr>
<tr>
<td>(h_1) = 278.7 kJ/kg</td>
<td>(h_2) = 290.4 kJ/kg</td>
<td>(h_3) = 335.7 kJ/kg</td>
</tr>
<tr>
<td>(\dot{m}_1) = 0.05 kg/s</td>
<td>(\dot{m}_2) = 0.1 kg/s</td>
<td>(\dot{m}_3) = (\dot{m}_1) + (\dot{m}_2) = 0.15 kg/s</td>
</tr>
</tbody>
</table>

\[
\dot{W} = 0.5 \text{ kg/s}(278.7 \text{ kJ/kg}) + 0.1 \text{ kg/s}(290.4 \text{ kJ/kg}) - 0.15 \text{ kg/s}(335.7 \text{ kJ/kg}) = -7.38 \text{ kW}
\]
6.85 A heat exchanger is used to cool an air flow from 800 K to 360 K, with both states at 1 MPa. The coolant is a water flow at 15°C at 0.1 MPa. If the water leaves as saturated vapor, find the ratio of the flow rates \(\dot{m}_{\text{water}} / \dot{m}_{\text{air}} \).

Given: Inlet and outlet conditions of a heat exchanger.

Find: The ratio of flow rates needed to satisfy the inlet/outlet conditions.

Assumptions: Steady flow process, streams do not mix, air can be treated as an ideal gas, negligible changes in kinetic and potential energy, \(Q = 0 \) (to surroundings).

Solution:

Conservation of Energy:

\[
\left(\frac{dE}{dt} \right) = \dot{Q} - \dot{W} + \sum \dot{m}_i (h_i + ke_i + pe_i) - \sum \dot{m}_e (h_e + ke_e + pe_e) \\
0 = 0 + \dot{m}_{\text{air}} (h_1 - h_2) + \dot{m}_{\text{water}} (h_3 - h_4)
\]

\[
\frac{\dot{m}_{\text{water}}}{\dot{m}_{\text{air}}} = \frac{h_1 - h_2}{h_3 - h_3}
\]

Define States:

<table>
<thead>
<tr>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
<th>State 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1 = 1.00 \text{ MPa})</td>
<td>(P_2 = 1.00 \text{ MPa})</td>
<td>(P_3 = 100 \text{ kPa})</td>
<td>(P_4 = 100 \text{ kPa})</td>
</tr>
<tr>
<td>(T_1 = 800 \text{ K})</td>
<td>(T_2 = 360 \text{ K})</td>
<td>(T_3 = 15^\circ \text{C})</td>
<td>(x_4 = 1)</td>
</tr>
<tr>
<td>(h_1 = 822.2 \text{ kJ/kg})</td>
<td>(h_2 = 360.9 \text{ kJ/kg})</td>
<td>(P > P_{\text{sat}}(T=15^\circ \text{C})) : subcooled</td>
<td>(h_4 = 2675.5 \text{ kJ/kg})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(h_3 \approx u_f(T=T_3) + P v_f(T=T_3))</td>
<td>(h_4 \approx 62.98 \text{ kJ/kg} + (100\text{kPa})0.001001\text{m}^3/\text{kg})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(h_3 \approx 63.08 \text{ kJ/kg})</td>
<td>(h_4 \approx 2675.5 - 63.08 = 0.177)</td>
</tr>
</tbody>
</table>

\[
\frac{\dot{m}_{\text{water}}}{\dot{m}_{\text{air}}} = \frac{h_1 - h_2}{h_3 - h_3} = \frac{822.2 - 360.9}{2675.5 - 63.08} = 0.177
\]
Two air flows are combined to a single flow. One flow is $1 \text{ m}^3/\text{s}$ at 20°C and the other $2 \text{ m}^3/\text{s}$ at 200°C, both at 100 kPa. They mix without any heat transfer to produce an exit flow at 100 kPa. Neglect kinetic energies and find the exit temperature and volume flow rate.

Given: Inlet temperature, pressure, and volumetric flow rates. Outlet pressure

Find: Outlet temperature and volumetric flow rates.

Assumptions: Steady flow process, air can be treated as an ideal gas with constant specific heat, negligible changes in kinetic and potential energy, $\dot{Q} = 0$ (to surroundings).

Solution:

Conservation of Mass:

$$\left(\frac{dm}{dt} \right)_{\text{CV}} = \sum \dot{m}_i - \sum \dot{m}_e$$

$$0 = \dot{m}_1 + \dot{m}_2 - \dot{m}_3$$

$$\dot{m}_3 = \dot{m}_1 + \dot{m}_2$$

Conservation of Energy:

$$\left(\frac{dE}{dt} \right) = \dot{Q} - \dot{W} + \sum \dot{m}_i (h_i + ke_i + pe_i) - \sum \dot{m}_e (h_e + ke_e + pe_e)$$

$$0 = 0 - \dot{m}_1 h_1 + \dot{m}_2 h_2 - \dot{m}_3 h_3$$

$$0 = 0 - 0 + \dot{m}_1 h_1 + \dot{m}_2 h_2 - (\dot{m}_1 + \dot{m}_2) h_3$$

$$0 = \dot{m}_1 (h_1 - h_3) + \dot{m}_2 (h_2 - h_3)$$

$$0 = \dot{m}_1 C_p (T_1 - T_3) + \dot{m}_2 C_p (T_2 - T_3)$$

$$T_3 = \frac{\dot{m}_1 C_p T_1 + \dot{m}_2 C_p T_2}{\dot{m}_1 C_p + \dot{m}_2 C_p}$$

$$T_3 = \frac{\dot{m}_1 T_1 + \dot{m}_2 T_2}{\dot{m}_1 + \dot{m}_2}$$

Define States:
<table>
<thead>
<tr>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1 = 100,\text{kPa}$</td>
<td>$P_2 = 100,\text{kPa}$</td>
<td>$P_3 = 100,\text{kPa}$</td>
</tr>
<tr>
<td>$T_1 = 20^\circ\text{C}$</td>
<td>$T_1 = 200^\circ\text{C}$</td>
<td></td>
</tr>
<tr>
<td>$V_1 = 1,\text{m}^3/\text{s}$</td>
<td>$V_2 = 2,\text{m}^3/\text{s}$</td>
<td></td>
</tr>
<tr>
<td>$v_1 = RT_1/P_1$</td>
<td>$v_2 = RT_2/P_2$</td>
<td></td>
</tr>
<tr>
<td>$v_1 = (0.287\text{kJ/kgK})(293\text{K})/100,\text{kPa}$</td>
<td>$v_2 = (0.287\text{kJ/kgK})(473\text{K})/100,\text{kPa}$</td>
<td></td>
</tr>
<tr>
<td>$v_1 = 0.841,\text{m}^3/\text{kg}$</td>
<td>$v_2 = 1.36,\text{m}^3/\text{kg}$</td>
<td></td>
</tr>
<tr>
<td>$\dot{m}_1 = \dot{V}_1/v_1$</td>
<td>$\dot{m}_2 = \dot{V}_2/v_2$</td>
<td></td>
</tr>
<tr>
<td>$\dot{m}_1 = 1.19,\text{kg/s}$</td>
<td>$\dot{m}_2 = 1.47,\text{kg/s}$</td>
<td></td>
</tr>
</tbody>
</table>

\[
\dot{m}_3 = \dot{m}_1 + \dot{m}_2
\]

\[
\dot{m}_3 = 1.19\,\text{kg/s} + 1.47\,\text{kg/s}
\]

\[
\dot{m}_3 = 2.66\,\text{kg/s}
\]

\[
T_3 = \frac{\dot{m}_1 T_1 + \dot{m}_2 T_2}{\dot{m}_1 + \dot{m}_2}
\]

\[
T_3 = \frac{(1.19\,\text{kg/s})(20^\circ\text{C}) + (1.47\,\text{kg/s})(200^\circ\text{C})}{2.66\,\text{kg/s}}
\]

\[
T_3 = 119^\circ\text{C}
\]

\[
\dot{V}_3 = \dot{m}_3 v_3
\]

\[
\dot{V}_3 = \dot{m}_3 RT_3/P_3
\]

\[
\dot{V}_3 = 2.66\,\text{kg/s} \left(\frac{(0.287\text{kJ/kgK})(392\text{K})}{100\,\text{kPa}} \right)
\]

\[
\dot{V}_3 = 2.66\,\text{kg/s} \left(\frac{1.125\,\text{m}^3/\text{kg}}{100\,\text{kPa}} \right)
\]

\[
\dot{V}_3 = \frac{2.99\,\text{m}^3}{\text{s}}
\]

Note that $\dot{V}_3 = \dot{V}_1 + \dot{V}_2$ is just a coincidence in this case and not always true.
An open feedwater heater in a power plant heats 4 kg/s water at 45°C, 100 kPa by mixing it with steam from the turbine at 100 kPa, 250°C. Assume the exit flow is saturated liquid at 100 kPa and find the mass flow rate from the turbine.

Given: Inlet and exit conditions. One inlet mass flow rate. **Find:** The other inlet mass flow rate.

Assumptions: Steady flow process, negligible changes in kinetic and potential energy, $\dot{Q} = 0$ (to surroundings).

Solution:

Conservation of mass:

$$\frac{dm}{dt}_{CV} = \sum \dot{m}_i - \sum \dot{m}_e$$

$$0 = \dot{m}_1 + \dot{m}_2 - \dot{m}_3$$

$$\dot{m}_3 = \dot{m}_1 + \dot{m}_2$$

Conservation of Energy:

$$\left(\frac{dE}{dt}\right) = \dot{Q} - \dot{W} + \sum \dot{m}_i(h_i + ke_i + pe_i) - \sum \dot{m}_e(h_e + ke_e + pe_e)$$

$$0 = 0 - 0 + \dot{m}_1 h_1 + \dot{m}_2 h_2 - \dot{m}_3 h_3$$

$$0 = \dot{m}_1 h_1 + \dot{m}_2 h_2 - (\dot{m}_1 + \dot{m}_2) h_3$$

$$0 = \dot{m}_1 (h_1 - h_3) + \dot{m}_2 (h_2 - h_3)$$

$$\dot{m}_2 = \dot{m}_1 \frac{h_3 - h_1}{h_2 - h_3}$$

Define States:

<table>
<thead>
<tr>
<th>State 1</th>
<th>State 2</th>
<th>State 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_1 = 100$ kPa</td>
<td>$P_2 = 100$ kPa</td>
<td>$P_3 = 100$ kPa</td>
</tr>
<tr>
<td>$T_1 = 45°C$</td>
<td>$T_2 = 250°C$</td>
<td>$x_3 = 0$</td>
</tr>
<tr>
<td>$h_1 \approx u_f</td>
<td>45°C + P v_f</td>
<td>45°C$</td>
</tr>
<tr>
<td>$h_1 \approx 188.4$kJ/kg + (100kPa)(0.001010m³)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$h_1 \approx 188.5$kJ/kg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\[\dot{m}_2 = \frac{\dot{m}_1 (h_3 - h_1)}{h_2 - h_3} \]

\[\dot{m}_2 = 4\text{kg/s} \frac{417.4\text{kJ/kg} - 188.5\text{kJ/kg}}{2974\text{kJ/kg} - 417.4\text{kJ/kg}} \]

\[\dot{m}_2 = 0.358\text{kg/s} \]
7.7 A combination of two refrigerator cycles is shown in the figure. Find the overall COP as a function of COP\(_1\) and COP\(_2\).

Given: COPs of individual refrigerators.
Find: COP of the combined refrigerator.
Assumptions: Steady flow process.
Solution:

\[
\beta_{\text{Total}} = \frac{\dot{Q}_L}{\dot{W}_1 + \dot{W}_2} \quad (1)
\]

\[
\beta_1 = \frac{\dot{Q}_L}{\dot{W}_1} \Rightarrow \dot{W}_1 = \frac{\dot{Q}_L}{\beta_1} \quad (2)
\]

\[
\beta_2 = \frac{\dot{Q}_M}{\dot{W}_2} \Rightarrow \dot{W}_2 = \frac{\dot{Q}_M}{\beta_2} \quad (3)
\]

Plugging equations (2) and (3) into equation (1):

\[
\beta_{\text{Total}} = \frac{\dot{Q}_L}{\beta_1 + \beta_2 - \beta_1 \beta_2} \quad (4)
\]

\[
\dot{Q}_M = \dot{W}_1 + \dot{Q}_L = \frac{\dot{Q}_L}{\beta_1} + \dot{Q}_L \quad (5)
\]

Plugging equations (5) into equation (4) and divide through by \(\dot{Q}_L\):

\[
\beta_{\text{Total}} = \frac{\dot{Q}_L}{\frac{\dot{Q}_L}{\beta_1} + \dot{Q}_L} = \frac{1}{\frac{1}{\beta_1} + \frac{1}{\beta_2}}
\]

Multiply by \(\frac{\beta_1 \beta_2}{\beta_1 \beta_2}\):

\[
\beta_{\text{Total}} = \frac{\beta_1 \beta_2}{1 + \beta_1 + \beta_2}
\]
7.16 Calculate the efficiency of the steam power plant given in Example 6.9.

\[
\eta = \frac{\dot{W}_{\text{net}}}{\dot{Q}_{\text{in}}} = \frac{\dot{W}_T - \dot{W}_P}{\dot{Q}_b} = \frac{w_T - w_P}{Q_b} = \frac{640.7 \text{kJ/kg} - 4 \text{kJ/kg}}{2831 \text{kJ/kg}} = 0.225 = 22.5\%
\]

7.32 For each of the cases below, determine if the heat engine satisfies the first law and if it violates the second law.

a. \(\dot{Q}_H = 6 \text{kW} \quad \dot{Q}_L = 4 \text{kW} \quad \dot{W} = 2 \text{kW} \)

b. \(\dot{Q}_H = 6 \text{kW} \quad \dot{Q}_L = 0 \text{kW} \quad \dot{W} = 6 \text{kW} \)

c. \(\dot{Q}_H = 6 \text{kW} \quad \dot{Q}_L = 2 \text{kW} \quad \dot{W} = 5 \text{kW} \)

d. \(\dot{Q}_H = 6 \text{kW} \quad \dot{Q}_L = 6 \text{kW} \quad \dot{W} = 0 \text{kW} \)

Solution

a. \(\dot{Q}_H = \dot{Q}_L + \dot{W} \), Satisfies first law. Does not violate second law.

b. \(\dot{Q}_H = \dot{Q}_L + \dot{W} \), Satisfies first law. Violates second law because all of the heat is converted to work.

c. \(\dot{Q}_H \neq \dot{Q}_L + \dot{W} \), Violates first law. Does not violate second law.

d. \(\dot{Q}_H = \dot{Q}_L + \dot{W} \), Satisfies first law. Does not violate second law.

7.44 Calculate the thermal efficiency of a Carnot-cycle heat engine operating between reservoirs at 300°C and 45°C. Compare the results to that of Problem 7.16.

Given: Temperatures of two thermal reservoirs.

Find: Maximum efficiency of a heat engine operating between the two temperatures.

Solution

\[
\eta_{\text{Max}} = 1 - \frac{T_L}{T_H} = 1 - \frac{318K}{573} = 0.445 = 44.5\%
\]

The efficiency in 7.16 is lower than this because there are loses and most of the heat is added at temperatures below 300°C, and the heat is rejected at temperatures above 45°C.